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Abstract. The noise spectrum in hopping conduction systems is known to be closely related
to the conductivity, as shown by scaling relationships between the two. The frequency-
dependent conductivity and DC conductivity are related by scaling formulations as well.
Percolation theoretical frameworks, such as used here, generate automatically relationships
between frequency-dependent and DC transport properties. Under application of a DC field,
the power spectrum of the (flicker) noise is usually inversely proportional to the frequency,
proportional to the square of the applied field and, in crystalline germanium at low temperature,
T , it has been found to be independent ofT . Charge transport is traditionally represented in
terms of a random impedance network in which all pairs of sites are connected by resistors.
By considering cluster polarization effects of large clusters of resistors on the critical, blocking
resistances on the percolation path, it is shown here that hopping conduction systems at low
temperatures should generate a universal flicker noise proportional to the applied field squared,
the inverse of the frequency, and independent ofT . The cluster polarization effects considered
arise from charge transported through large numbers of resistors in sequence, a process which, as
it turns out, appears to generate much more visible effects in the noise than in the conductivity.

1. Introduction

1.1. Relationship with conduction

The source of 1/f noise, observed in a wide variety of condensed matter, has been debated
without resolution [1, 2]. The wide range of systems in which power spectra appear to
approximate a 1/f dependence (orf −[1+δ] , |δ| < 1) has suggested to many observers the
relevance of an underlying mechanism of great generality. Although the present work is
designed to addressdirectly only the noise spectrum in specific hopping conduction systems,
it will nevertheless not be possible either to ignore this fundamental uncertainty or to avoid
controversy regarding the best treatment of disorder.

Experimentally, the power spectrum,J (ω), of the noise is generally [2] determined in
the presence of a DC field,F . The contribution,1J(ω), to the power spectrum resulting
from the application of an external field is usually1J(ω) ∝ F 2/ω. In impurity conduction
in crystalline germanium experimental results [3] show that1J(ω) ∝ F 2/ω is independent
of temperature,T , as well. I try to clarify this result here.

Hopping conduction systems have been the prototypical systems for application of
percolation theory to transport [4]. Such percolation theoretical formulations have recently
been shown [5–8] to handle very low frequency conduction phenomena which are not
well suited for treatment in effective-medium theories [9]. Thus a significant additional
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motivation is provided for application of percolation theoretical treatments to calculations
of noise in hopping systems since it is precisely the low frequency portion of the noise
spectrum which is of interest here.

In order to apply percolation theory, otherwise known as critical rate analysis, conduction
must proceed primarily along paths of low resistance in an otherwise highly resistive random
network. These paths are constructed [4] from random associations of relatively low
resistance resistors. The blocking resistance on these paths has the valueRc, which is
calculated by applying the condition [10],

∫ Rc

0
W(R)dR = αc (1)

with αc a number, in a well known example [10] equal to 2.7, andW(R)dR the number of
resistances connected to an arbitrary site with resistance values betweenR andR+dR. This
condition states essentially that emplacement into the network of all resistors with resistance
values less than or equal toRc just generates an interconnected, infinitely long path. In
this type of treatment the DC conductivity,σDC ∝ 1/Rc. In strongly inhomogeneous
systems scaling of the AC conductivity with the DC conductivity and a critical frequency,
ωc, proportional to the DC conductivity results because a cross-over from local (at high
frequencies) to non-local relaxation occurs [11] atωc. The magnitude of the conductivity
is pinned to the DC value by the same percolation condition on relevant resistance values
at this frequency. BothRc andωc will turn out to be relevant to formulations of1J(ω)
as well. Together with the proposition below, these scaling arguments provide a basis for
understanding recent scaling formulations of the noise spectrum which involve the ohmic
conductivity [12].

1.2. Basis for calculations and new perspective

The calculations given are based on the (existing) proposition [13] that 1/f noise originates
from alterations in the resistance of the DC network produced by polarization charge
transport. The difference between the current and previous calculations [13] is that I
treat large-scale cluster polarization currents. I use expressions for the current, resistance
and capacitance of such chains which were derived originally to calculate the polarization
of polymers. This choice of theoretical inputs is compatible with a substitution of the
backbone portion of the cluster for the entire cluster. The currents relevant for the present
calculations involve charge transport at low frequencies through long chains of resistors
over and above the charge transported separately through individual resistors on time scales
derived from the individual resistance values. This type of cluster polarization has been
shown to be responsible for additional contributions to the real part of the dielectric constant
at frequencies belowωc, corresponding to critical percolation [5–8] (with prior [14] and
subsequent [15] agreement with experiment). Such cluster polarization effects may be
important in a wide variety of insulators which have a non-zero DC conductivity at finite
temperatures due to hopping conduction. The topology of random impedance networks
including the connectivity of the individual portions of the network plays a role in the
calculations; these particular aspects may be relevant for 1/f noise in a wider range of
systems than those considered here.
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2. The impedance network representation

The Nyquist theorem for the noise in a resistive circuit element was derived [16] in an
inductive picture of conduction (appropriate to e.g. metallic conduction) in which the
correlation time of a random current contribution is determined by a scattering time [5].
It may be equally applied to capacitive phenomena such as hopping conduction with the
correlation time replaced by a relaxation time. The Miller–Abrahams (MA) [17] random
impedance network which the following calculations exploit, is equivalent to the regime of
ohmic transport described by the coupled set of first-order differential equations,

dfi/dt =
∑
j

fjwji [1− fi ] − wij [1− fj ]. (2)

fi is the probability that sitei is occupied (supposed equal to the mean occupation in the
case of Fermi statistics) andwij is the conditional probability per unit time that, given
site i is occupied and sitej is empty, an electron can tunnel from sitei to site j .
Both the f and thew in this equation are exponential functions of random variables
related to site energies, while only thew are exponential functions of site separations [17].
Stochastic microscopic transport described by this system of first order equations, clearly
consistent with microscopic exponential decay of charge fluctuations, may be equivalently
represented in terms of a random impedance network in the ohmic regime [17, 18]. This
MA impedance network consists of resistors and capacitors, whose connections with (2),
physical interpretations and values in the ohmic transport regime are given below. Later
calculations involving non-ohmic effects are based on lowest-order (in the applied field)
modifications of the ohmic network.

The individual resistances describe [17] the difficulty of transferring charge from e.g.
site i to j (resistorRij ) while the capacitors describe [18] the ability to alter the charge
on site i (capacitorCi). TheR are connected between each pair of sites,i;j , while, for
purposes of calculating the AC conductivity, theC are connected between each site and a
generator of the external potential. The values,

R−1
ij =

e2

kT
fiwij [1− fj ] (3)

and

Ci = e2

kT
fi [1− fi ] (4)

of the resistances and capacitances are obtained through the linearization of (1) in an applied
field. The statistical occurrence of the individual resistors is given in terms of the equilibrium
occurrence of thewij andfi . The relaxation time [19, 20],τ , of the subunit consisting of the
sitesi andj is RijCiCj/(Ci+Cj). In the system studied here, variable range hopping [21],
the typical resistance lengths area(T0/T )

1/4, and typical site energies are confined to within
kT (T0/T )

1/4 of the Fermi energy. Here,T0 is a reference temperature related to the density
of states, anda is the localization radius of the electronic wave functions.

The stochasticity in the microscopic transport is an obvious choice for generating the
noise in the resistors,Rij . Provided whatever charge transport involvingi andj is restricted
to occur between these sites (e.g. at high frequencies if all other resistors connected to either
site i or j are much larger) the relaxation of charge fluctuations on these two sites can be
described by the single differential equation appropriate to anRC series network, i.e. (2)
with j restricted to a single site. The power spectrum of a resistor connecting such a pair
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of sites is well approximated by the Nyquist formula [16],

J (ω) = RkT/π ω 6 τ−1 (5)

J (ω) = 0 otherwise (6)

with τ the relaxation time given above. The reason why this representation is adequate
for the present purpose is that the equivalent resistors in such strongly disordered systems
are exponential functions of random variables. The logarithmic frequency scale appropriate
for ‘strong’ disorder compressesJ (ω) sufficiently that the distinction between the exact
form (a Lorentzian) and a sharp cut-off at a maximum frequency is unimportant when the
superposition of power spectra of independent resistors is calculated. Such a superposition
generates an approximate 1/f noise spectrum at frequencies greater thanωc whenever
the individual resistance values are exponential functions of random variables [22, 23].
At ωc the contributing resistance values areRc, and J (ωc) ≈ kT Rc ∝ 1/σDC . The
approximate result,J (ω) ∝ 1/ω for ω > ωc is consistent with the scaling formulation,
J (ω) ∝ [(ωc)/(ω)]1/σDC . For ω < ωc resistorsR < Rc do not contribute substantially to
an unstimulated noise, and potential fluctuations due to resistors (or clusters of resistors) with
R > Rc are either shorted or screened by the smaller resistors so thatJ (ω) becomes constant.
For calculations of the flicker noise at low frequencies we will be interested nevertheless
in long chains of resistorsR < Rc, and their interaction with the DC current. The
transport/relaxation characteristics of 1D chains were determined by Pollak and Pohl [24].
The relaxation time of the chain is roughly [24],

τN,R = N2RC/π2 = NRNC/π2 (7)

explicitly demonstrating the physical result thatN times the charge per characteristic resistor
must be transferred throughN times the number of resistors. The factorπ2, appropriate for
largeN , is extraneous in the limitN → 1. Equation (7) actually gives the largest relaxation
time appropriate for such a chain ofN resistors andN+1 capacitors; the smaller relaxation
times correspond to charge transport through portions of the chain [24], and their effects can
show up at different frequencies (differentN ). Thus the enhanced relaxation time reflects
that the currents denoted as cluster currents account for additional transfer of charge (not
just the sum of the charges transferred through individual resistors) on a much longer time
scale. Consistent with the transport of charge throughN resistors is the observation [24]
that the equivalent resistance of the chain isNR.

3. Application of a DC field

As for non-linear conduction, effects due to application of a DC field are many and varied.
Identifying the most important effect(s) can be aided by comparison with experiment.
Individual resistors change their resistance value, clusters of resistors change their cluster
resistance values and relaxation times, and fluctuations in both the polarization and DC
currents influence each other.

The addition of a DC field reduces the relaxation times of individual resistors and clusters
of resistors [24]. To lowest order, this reduction is by a term proportional simultaneously
to the square of the field and the zero-field relaxation time. This effect is stronger for
clusters than for individual resistors (and thus is larger at low frequencies) because of the
increased relevant length scales of the energy of the external field, and because the relaxation
times of large clusters of resistorsin the absence of a DC fieldare strongly enhanced over
those of the largest resistors in the cluster. As a consequence, the noise arising from large
clusters of resistors is shifted to a higher frequency, enhancing the noise spectrum at that
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frequency [25]. An interesting consequence of this physical result is that the enhancement
of the power spectrum at any frequencyby this meansis very closely related to the noise at
that frequency in the absence of an external field. In some respects this result is desirable,
in others it is not. Since scaling formulations of the flicker noise [12] demonstrate its
intimate connection with the conductivity, itself related to the unstimulated noise by the
fluctuation-dissipation theorem, a close relationship between the forms of the flicker noise
and unstimulated noise must exist. However, it can be shown that using such an argument
as a basis for a calculation scheme leads to a contribution to the flicker noise which extends
only to frequencies incrementally belowωc with the increment an increasing function of the
external field [25]; such a restriction is not noted experimentally [26] and this mechanism
is rejected.

Fluctuations in the energies of sites on the percolation path produce fluctuations in the
resistance of the critical network. Such fluctuations (due to cluster polarization effects) will
be shown here to occur at arbitrarily low frequencies for arbitrarily small fields, and are
the ones of greatest interest. This type of mechanism has been suggested [13, 26] to be the
most likely to produce the observed 1/f noise; what is new here is the explicit means to
calculate the magnitudes of the fluctuations in terms of concrete cluster polarization effects,
as well as the resulting quality of agreement with experiment.

Fluctuations in the critical resistance,1Rc, lead to contributions to1J(ω) ≈ kT1Rc.
Changes in individual site energies lead to changes inRc through alteration of thef , while
changes in energy gradients produce changes inRc through an alteration of thew. For
simplicity we look only at effects on thef . The changes in site energy are proportional
to the square of the applied field because it is an interaction energy between two distinct
induced charges, one on the DC cluster, the second on the backbone of a large, but finite
cluster nearby.

Consider the Coulomb interaction between the induced charge,1ρ2, on the end of
a chain ofN critical resistors (andN + 1 associated capacitors) and an induced charge,
1ρ1, on a site,j , on the critical path. I chooseR = Rc in such chains because, at
critical percolation, clusters of all sizes exist, in contrast to off-critical resistors for which
exponential functions cut off cluster distributions at large cluster sizes. In the presence of
a DC field,F , the occupation of sitej on the DC path may be altered by exp[e(eF l)/kT ],
where l is the distance between resistors,Rc. l is the same for the separation of critical
resistors on a large cluster, and very nearly the same value for their bulk separation. The
induced charge is given by the lowest order expansion of an exponential occupation factor
both on the DC path and on large (unconnected) clusters, and for a site on the DC path
is 1ρ1 ∝ e(eF l)/kT . Similarly, the additional charge at one end of the chain of resistors
is 1ρ2 ∝ [e(NeF l)/kT ]NC, whereNC is the (parallel) capacitance of the chain, and
NeF l is the potential difference across the chain. Each of theN + 1 capacitors forT not
too low, have (in variable-range hopping)C = e2/kT , meaning that the charge generated
per critical resistor is the ratio of the field energy,eF l to the thermal energy,kT , times
the electronic charge, and is also representable as the product of the capacitance and the
potential,CV = (e2/kT )F l. However [27] at very lowT , Coulomb repulsion on a chain
of resistances inhibits charge generation, and involves a ratio of a Coulomb energy per
critical resistor tokT . Thus when the thermal energy available to an electron is no longer
enough to offset the self-energy per electron, the self-energy limits the charge generation.
The reason why the self-energy per electron is the relevant energy is that an average is
performed over many possible hopping transitions, each of which involves a probability
of electronic transfer which is much smaller than one. The resulting modification to the
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capacitance is

C = e2

kT + e2

εl

(8)

whereε is the background dielectric constant of the medium. These induced charges produce
an interaction energy as large as

1Eint = 1ρ11ρ2

εr
(9)

wherer is the minimum reasonable separation. A value ofr smaller thanl appears to be
unreasonable, becausel gives the separation of the critical resistance values, so I choosel.
1R = Rc exp(1E/kT )− Rc is now,

1R =
[
eF l

kT

]2

N2 e2

εl
(
kT + e2

εl

)Rc. (10)

In the low temperature limit,kT < e2

εl
, this expression yields

1J(ω) = kT Rc
[
eF l

kT

]2

N2. (11)

But the condition on the largestN allowed is frequency dependent sinceN2RcC = τ cannot
exceed 1/ω, allowing the substitutionN2→ ωc/ω, and

1J(ω) = kT Rc
[
eF l

kT

]2
ωc

ω
. (12)

Since the cross-sectional area taken up by a chain ofN resistors of separationl is l2, the
number of such clusters available for influencing the DC current on any given segment
of the DC cluster must be proportional to [a

l
]2 (with a the localization length)) and

1J(ω)→ 1J(ω)[ a
l
]2.

The scaling form of (12) is identical to that in the text between (6) and (7) except for the
additional factor(eF l)2/(kT )2, the ratio of the square of the field energy per critical resistor
to the square of the thermal energy. Although various statistical effects have been ignored
in this discussion, and only the largest reasonable effect has been calculated, result (12) will
turn out to be in accord with experiment in crystalline germanium [3], and its appearance
in this type of scaled form involving the critical resistance and critical frequency suggests
its relevance to general formulations of the flicker noise in hopping conduction systems.

4. Conclusions

The following results have been obtained:

(i) in the absence of an external fieldJ (ωc) ∝ RckT in all systems, allowing approximate
scaling formulations ofJ (ω)/J (ωc), whereJ (ωc) ∝ 1/σ(ωc) ∝ 1/σDC ,

(ii) an additive enhancement ofJ (ω) (for sufficiently lowT , a condition dependent on
relevant Coulomb interaction energies compared withkT ) which is proportional toω−1 and
(to lowest order) to the square of the applied field, i.e.

1J(ω, F ) ∝ ωc

ω

RckT

(l/a)2

[
eF l

kT

]2

(13)
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(iii)

J (ωc, F ) ∝ Rce
2F 2a2

kT
= F 2a2

ωc

(the latter equality does not follow in spatially random systems, i.e. nearest neighbour
hopping).

The specific result (iii) in the case of VRH (variable-range hopping) is compared
with recent experimental observations [3] of the noise spectrum incrystalline germanium,
although some uncertainty in the interpretation arises. While conduction in crystalline
germanium is assumed to proceed by electronic ‘hopping’ through impurity states at
temperatures low enough to exclude band hopping, it is usually assumed [28] that the
mechanism for the DC conduction is by ‘nearest neighbour’ hopping [20] (SR systems)
at the highest temperatures (for which band hopping is negligible), variable-range [28]
hopping at lower temperatures, and variable-range hopping in a Coulomb gap [29] at still
lower temperatures. Without specific data for the conductivity, it is not possible to state
conclusively whether the variable-range hopping model is appropriate. Nevertheless, the
results were interpreted by Shlimaket al [3] in terms of the hopping model calculations
of Shklovskii [13] and coworkers. The result at low frequencies from (41) is (ignoring
numerical constants),

1J(ω, F ) = F 2a

ω
= F 2a2

ωa
. (14)

The noise spectrum was reported by Shlimaket al [3] to be proportional to the square of
the electric field,F , the inverse of the frequency,ω, and to be temperature independent, in
agreement with the result here. Since Shlimaket al [3] demonstrate a cross-over from a
strong temperature dependence (at higherT ) to the temperature-independence (at lowerT ),
this may represent a cross-over from nearest-neighbour to variable-range hopping; in such
a case a cross-over from an exponential temperature dependence to a result independent
of T appears to duplicate their results. (As pointed out in section 3, the exponentialT

dependence in SR systems arises from the fact thatRc is exponentiallyT dependent, but
ωc = [Rc]−1 is not, in contradistinction to VRH.)

My work on this problem has benefited greatly from conversations with Michael Weissman,
who is responsible for corrections to mistakes in previous, unpublished, versions, and for
helping set me on the right track, but not for any mistakes which should still be present.
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